Enhancement of compression and compaction properties of calcium carbonate powder by granulation with HPC, HPMC and sodium-alginate as binders for pharmaceutical applications: an optimization case study.

Deeb Abu Fara* a, Iyad Rashid b, Linda Hmoud a, Shatha al-Qatamin c, Babur Z. Chowdhry d, Adnan A. Badwan b

aChemical Engineering Department, School of Engineering, University of Jordan, Amman 11942, Jordan
bResearch and Innovation Centre, The Jordanian Pharmaceutical Manufacturing Company (JPM), Naor 11710, Jordan
cFaculty of Pharmacy and Medical Sciences, Al-Ahliyya Amman University, Jordan
dSchool of Science, Faculty of Engineering & Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent, UK

Received: March 24, 2020; Accepted: May 29, 2020

ABSTRACT

Calcium carbonate must be processed before it can be compressed into tablets. This study examined the compression behavior of calcium carbonate powder when granulated with different binders. Hydroxypropyl cellulose (HPC), hydroxypropyl methylcellulose (HPMC) and sodium alginate (Na-Alg), were chosen at different concentrations as binding agents. Data analysis and optimization were carried out using load-displacement curves and the Kawakita model of powder compression. The viscosity of the binder solutions, the specific surface area of the granulated CaCO_3 and the contact angle of the binder solutions on CaCO_3 compact surfaces were used to interpret granulation behavior. Each binder interacted differently with CaCO_3 with respect to powder and tablet properties. Optimum tablet processing was found to be strongly dependent on the compression pressure and concentration of the binder used. A 3% binder concentration gave the most desirable outcomes with respect to the area under the load-displacement curves (AUCs), the Kawakita parameter (P_k) and tablet crushing strength (TCS). Calcium carbonate tablets prepared at the optimum binder concentration were stable when stored under accelerated stability conditions.

KEY WORDS: Excipients, binders, calcium carbonate, compactibility, compressibility, direct compression, flowability, load-displacement curve, Gamlen tablet press, granulation, tableting, tablet crushing strength

INTRODUCTION

Calcium carbonate (CaCO_3) is one of the most abundant minerals in the earth’s crust. It forms various types of rocks such as chalk and limestone. In the oceans, it represents 10% of chemical sediments. Almost all the CaCO_3 that makes up the earth’s crust is derived from marine organisms, skeletal remains, and other biological constituents that include fecal pellets, lime mud (skeletal), and microbially mediated cement (1). CaCO_3 can also be synthesized industrially using different routes of syntheses. The most common routes are via solid-liquid or gas-solid–liquid carbonation (2). These techniques consist of bubbling gaseous CO_2 through concentrated calcium hydroxide, Ca (OH)_{2}, and/or a calcium magnesium hydroxide (CaMg (OH)_{2}) slurry. The large-scale production of CaCO_3 in such a
manner contributes to the high cost of the raw material
(2, 3).

Both the natural and synthetic forms of \(\text{CaCO}_3 \) can
be used as an excipient or as an active pharmaceutical
ingredient (API). As the latter, \(\text{CaCO}_3 \) is used as a
therapeutic anti-acid and calcium supplement whereas
as the former it is used as a filler or diluent (4, 5). In
both pharmaceutical uses a high mass content of
calcium carbonate must be used in solid dosage forms
to provide therapeutic or diluent actions, respectively
(6-10).

Generally, tablets produced using raw \(\text{CaCO}_3 \),
whether obtained from natural or synthetic sources,
are fragile and exhibit low tensile strength (11). This
is mainly attributed to two inherent properties of
\(\text{CaCO}_3 \), namely surface morphology and deformation
upon compression. Regarding surface morphology,
Mark et. al. (12) and Santoso et al. (13) attributed
more significance to the morphology parameter than
porosity when evaluating the bridging density of
the CaCO\(_3\) particles and the ensuing tensile strength
of the compacts formed. The latter property is not
preferred from a deformation perspective when
plastic deformation predominantly provides more
fresh surfaces for bridging than brittle fracture.
Consequently, the presence of smooth flat surfaces
results in a low specific surface area and the brittle-
fracture nature provides a low number of contact
points for binding when CaCO\(_3\) powder is subjected
to compression. To resolve this issue, researcher have
focused on improving the surface-to-surface binding
affinity of CaCO\(_3\) adopting different approaches (14,
15). One such modification involved the nature of the
precipitation process that was used to obtain CaCO\(_3\)
with a high specific surface area. Under controlled
precipitation conditions, the specific surface area
increases by 70% from its original value thus resulting
in a CaCO\(_3\) product with tableting properties equivalent
to that of microcrystalline cellulose (16).

Traditionally the most common approach adopted for
solid dosage form manufacturing is wet granulation
that involves the use of binding agents that ensure
surface coverage of the mineral. Maltodextrins,
sorbitol, mannitol, maltitol, and xylitol are examples
of binders used at a total content of 4-25% (w/w) in
wet granulation (17-20). These binders have, however,
mostly been tested in research applications, as there
are to date, very few registered products on the market.
For example, calcium carbonate supplements are
manufactured by spray granulation using starch/starch
1500 (21) or maltodextrin/acacia systems (22) and
used as binders at a mass content of 10% and 5-10%
(w/w), respectively. In addition to the binding effects
achieved by using these excipients, the presence of a
combination of brittle and plastic/elastic materials
provide a synergistic effect to improve powder
compressibility and tabletablity (23-25). However, the
concentration of these binders in solid dosage form
manufacturing is largely empirical. Gabbott et. al. (26)
showed that there is an optimum binder concentration
which achieves the highest granule strength. In their
work, when \(\text{CaCO}_3 \) was granulated with PEG 1500
at concentrations of \(\leq 10\% \) w/w and \(\geq 16\% \) w/w, the
compressive strength tested on a single granule encountered
a substantial decrease from its maximum value which
lay between 10% and 14%, w/w. This decrease in
compressive strength was due to a lower brittle-fracture
behavior as measured by load-displacement (26).

Optimum binder concentration is similarly illustrated
in the work of Pusapati et. al. (27) where \(\text{CaCO}_3 \) was
granulated with acacia at 1.8, 2.54, 3.24% w/w. The
Kawakita parameter, \(P_k \), which is indicative of the
granule strength, was highest at a binder concentration
of 1.8% w/w. Above this value, the \(P_k \) value underwent
a sharp decrease that correlated with poor tableting
properties.

\(\text{CaCO}_3 \) for industrial use is generally obtained from
synthetic sources which are usually 99% pure. In the
present work, a quarry of geologically deposited \(\text{CaCO}_3 \)
was selected from 9 screened sites in Jordan. Different
samples from the different quarries were analyzed and
showed a \(\text{CaCO}_3 \) content of more than 99%. This
finding indicated that the \(\text{CaCO}_3 \) from such sources
could be suitable for processing into tablets. Moreover,
the very low cost of \(\text{CaCO}_3 \) from the local source (of
two-orders of magnitude lower than common sources
on the market) motivated investigating the granulation
of the naturally occurring CaCO$_3$ at an API content of >90%. Granulation of CaCO$_3$ with 1-5% (w/w) binder concentration was expected to provide a powder suitable for direct compression.

This aim of this research was to modify the properties of the naturally occurring CaCO$_3$, via process optimization into an industrial commodity suitable for direct compression and handling. Hydroxypropyl cellulose (HPC), hydroxypropyl methylcellulose (HPMC) and sodium alginate (Na-Alg) were tested and evaluated for their binding capabilities at different concentrations. These binders have never been tested with CaCO$_3$ at low concentrations (<5%). Load-displacement curves, Kawakita compression analysis, tablet crushing strength, and the physical properties of the binders were used to determine the optimum binder to the CaCO$_3$ ratio.

MATERIALS AND METHODS

Materials

Highly pure calcite comprising 99.95% w/w CaCO$_3$ (PC-20 grade, of particle size; D$_{10}$=30 μm and D$_{90}$=120 μm) was purchased from the Petra Carbonate Factory (Al-Jeeza, Jordan). The natural CaCO$_3$ used was analyzed and found to comply with USP pharmaceutical grade requirements (USP31–NF26). Hydroxypropyl cellulose (JF pharm grade; Ashland, Inc, Kentucky, USA), with a viscosity (5% solution at 25°C) of 150-400 mPa.s and an MW of 140,000 Da; Hydroxypropyl methylcellulose (hypomellose K750 PH PRM; Ashland, Inc, Kentucky, USA), with a viscosity (2% solution at 20°C) of 562 mPa.s, MW 250,000 Da and Na-Alg (KIMITEX AX-M; KIMICA Corporation, Chuo-ku, Tokyo, Japan) with a viscosity (1% solution at 20°C) of 300-400 mPa.s were used.

Methods

Preparation of the calcium carbonate granules

Three calcium carbonate powder lots, weighing 495, 485, and 475 g respectively were placed in different trays. Solutions of HPC, HPMC, and Na-Alg were made by dissolving 5, 15, and 25 g of each polymer in 125, 225, and 300 mL, respectively, in distilled water. Granulation was carried out by spraying the calcium carbonate powder with the binding solutions using a generic spray bottle equipped with a spraying nozzle. The powder bed was manually stirred to ensure the spreading of the binder on the CaCO$_3$ surface. This process continued until all the binding solution had been incorporated. The granulated powder was placed in a drying oven at 60°C for one hour. The dried granules were sieved through an 850 μm (#22 mesh size) sieve and collected over sieve size 250 μm. Grinding and crushing were avoided to minimize polymer-CaCO$_3$ adhesion perturbation. This process resulted in calculated polymer concentrations of 1, 3, and 5% (w/w) in the granulations. The final weight of each granulation was in the vicinity of 500 g. Granulated lots were stored in tightly capped containers at room temperature for further evaluation.

Experimental design using response surface methodology

Response surface methodology (RSM) was used to undertake a coherent experimental design to assist in the process optimization of CaCO$_3$ granulation and tableting using different binders at different concentrations. The design was carried out using Design-Expert® software version 11. Two factors were chosen as the independent variables (A) Binder concentration (w/w) and (B) Compression load (kg). The two affected responses were considered (R1) Compression work (kg.mm) and (R2) Tablet crushing strength (kN). RSM optimization of the critical attributes was carried out using Central Composite Design software with three levels for each factor. Lower and upper limits of binder concentrations and compression loads were chosen as 1% (w/w) and 5% (w/w) (coded as -1 and +1), and 100 kg and 300 kg (coded as -1 and +1), respectively. Code 0 represents the middle value between lower and higher limits for binder concentration and compression load (i.e., 3% w/w binder concentration and 200 kg compression load). The star point or α (representing the extreme axial run) was evaluated as 1.414 for a two factorial design shown in Equation 1 (28):
where; \(k \) is the number of factors. The values of the two input parameters and the corresponding codes are shown in Table 1. Data analysis, using ANOVA, was carried out to determine the significance of the experimental factors.

Table 1 Experimental design: values of the inputs and corresponding codes

<table>
<thead>
<tr>
<th>CODE</th>
<th>FACTOR 1 BINDER CONCENTRATION (%)</th>
<th>FACTOR 2 COMPRESSION LOAD (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.414</td>
<td>0.4</td>
<td>60</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>300</td>
</tr>
<tr>
<td>1.414</td>
<td>7.0</td>
<td>425</td>
</tr>
</tbody>
</table>

Compression

200 mg of powdered samples of CaCO\(_3\) from the original natural source (used as a reference) and from the 1, 3, and 5% w/w granulated dried powder (sieved through 250-850 μm) were weighed and poured into 6 mm diameter dies. The powders were compressed using a Gamlen tablet press (Gamlen Tableting Ltd., Biocity Nottingham, UK). Compression was repeated twice for each sample at different compression loads (100, 200, 300, 400, and 500 kg). The speed of compression was set at 60 mm/min using a 6 mm circular punch. Lubrication was excluded to avoid the influence of lubricants on the compression data. An example of the resultant load-displacement curve (L-D) is presented in Figure 1. The figure denotes an ascending compression curve that ends at the maximum force applied (± 10 kg) followed by a descending elastic recovery curve. The L-D data were transferred to excel sheets for calculating the area under the compression curve (AUC). AUC represents the work (or energy) input during powder compression.

Compression analysis

The Kawakita model was used to analyze compression behavior. This empirical model is predicated on the fact that there is a linear relationship between the [compression pressure/powder volume reduction ratio] and compression pressure shown in Equation 2:

\[
\frac{P}{C} = \frac{P}{a} + \frac{1}{ab}
\]

where; \(C \) is the degree of volume reduction of the powder column under applied pressure, \(P \). The constant \(a \) is the minimum porosity of the material before compression, the constant \(b \) relates to the amount of plasticity of the material whereby the reciprocal of \(b \) or \(P_k \) defines the pressure required to reduce the powder bed by 50% from its initial volume (29, 30).

Crushing strength measurement

Powder compression was investigated using a single punch tablet press (Manesty, County Durham, UK). The use of such a tablet press provides a realistic representation of the actual industrial compression of powders. 200 mg of each of the prepared CaCO\(_3\)-binder samples was compressed using a 9 mm die. Compression was carried out at forces of 30, 35, 40, 45, and 50 kN. 10 tablets were compressed at each
compression force. The crushing strength of compacts was measured using a crushing strength tester (Copley, Nottm Ltd, Therwil, Switzerland).

Scanning Electron Microscopy (SEM)

A Thermo Fisher Scientific SEM (Eindhoven, Netherlands) was used for the analysis of the samples. Samples of natural CaCO$_3$ and from a 5% w/w granulated dried powder (sieved) were mounted on aluminum stubs and then coated with gold in a low-vacuum sputter coating chamber operating at 1200 V, 20 mA for 105 seconds.

Viscosity measurements

The viscosity of HPC, HPMC, and Na-Alg solutions at concentrations of 1, 3, and 5% w/w were measured using an MCR 302 rotational rheometer with a double gap system (Anton Paar, antonpaar.com). Viscosity was measured when the torque applied was fixed at the lowest plate spindle speed (0.01 s$^{-1}$ shear rate).

Specific surface area (SSA) measurements

The specific surface area measurements (SSA) of the natural and granulated calcium carbonate with HPC, HPMC, and Na-Alg was quantified by gas adsorption using a Sorptomatic 1990 (Carlo Erba Instruments, Rodano, Italy). Samples were initially degassed under vacuum for 24 hours at 70°C, then exposed to nitrogen at 77.4 K (-195.75°C). According to the Brunauer–Emmet–Teller (BET) equation (31, 32), the SSA was determined within a relative pressure range p/p_0 between 0.05 and 0.3. Surface areas for each sample were measured in triplicate.

Contact angle measurement

Contact angles of droplets made of HPC, HPMC, and Na-Alg at concentrations of 1, 3, and 5% (w/w) were measured on a CaCO$_3$ compact surface using a contact angle goniometer (DataPhysics, Filderstadt, Germany). Droplets, 500 μL each, were automatically ejected at a dosing rate of 1.0 μL/s through a syringe onto the CaCO$_3$ compact surface. The instrument captured drop images and automatically recorded and analyzed the drop images via the instrument software which uses a baseline, a curve and a tangent to analyze the droplet image.

Preparation and physical stability of CaCO$_3$ tablets using different binders

Calcium carbonate tablets comprising 90% CaCO$_3$ granulated with either HPMC or Na-Alg were prepared. HPC was excluded in the stability study analysis due to its failure to provide sufficient compressibility and compatibility at the initial compression stage. Two calcium carbonate batches were prepared, each consisting of 3 kg of calcium carbonate granulated with either HPMC or Na-Alg. An aqueous granulating solution containing 110.5 g of each binder was dissolved separately in distilled water in a quantity sufficient to make a clear solution. Calcium Carbonate powder was granulated with the binder solution until a cohesive mass was obtained. The granulated mass was dried in a tray dried oven at 70°C for 3 hours. The dried granulated powder was passed through sieve size (mesh No. 18 equivalent to 1.00 mm opening). Microcrystalline cellulose (215 g), starch sodium glycolate (103 g) sodium lauryl sulfate (15 g), and magnesium stearate (0.1 g) was mixed in a mixer for 7 minutes. Peppermint oil (1.1 g) was sprayed on the powder mixture and mixed for an additional 3 minutes. This mixture was added to the Calcium Carbonate granules in a mixer and mixed for 15 minutes. The granulated mixture was fed to a Manesty single punch tableting machine with a 13 mm punch size and compressed into tablets with a weight of 1440 mg at 45 kN. Each batch produced approximately 2400 tablets. The resulting tablets (with the composition shown in Table 2) were stored in tight containers for further testing.

500 tablets of each batch were stored in open lid bottles in an oven at 40°C at a relative humidity of 75%. Samples were withdrawn initially and at three and six months. At each interval, 100 tablets were withdrawn and were subjected to weight, disintegration, friability,
Table 2 Composition of a single prepared CaCO₃ tablet using HPMC or Na-Alg as binders (prepared for physical stability testing)

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>% (w/w)</th>
<th>TABLET CONTENT (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaCO₃</td>
<td>86.8</td>
<td>1250</td>
</tr>
<tr>
<td>Binder (HPMC, Na-Alg)</td>
<td>3.20</td>
<td>46.02</td>
</tr>
<tr>
<td>Microcrystalline cellulose (MCC 101, 50 μm)</td>
<td>6.23</td>
<td>89.70</td>
</tr>
<tr>
<td>Sodium starch glycolate (Primojel)</td>
<td>3.00</td>
<td>43.20</td>
</tr>
<tr>
<td>Sodium lauryl sulphate (SLS)</td>
<td>0.44</td>
<td>6.32</td>
</tr>
<tr>
<td>Peppermint oil</td>
<td>0.03</td>
<td>0.44</td>
</tr>
<tr>
<td>Mg stearate</td>
<td>0.30</td>
<td>4.32</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>1440</td>
</tr>
</tbody>
</table>

and hardness testing carried out according to the USP compendia testing method (USP31–NF26- page 1603). Concurrently, the percent water content of the ground tablets was measured using a Karl Fischer volumetric titrator (Mettler Toledo, Hamburg, Germany).

RESULTS AND DISCUSSION

Granulation

The percent v/w of the volume of the granulating liquid to the weight of the CaCO₃ was 25%, 46.4%, and 63.2% for binder concentrations (in the subsequently dried granulation) of 1, 3, and 5% respectively. No attempt was made to determine the optimum volume to weight ratio of binder liquid to the mass of CaCO₃ (for example using power consumption, thermal effusivity or NIR), thus it was not known if the wet granulation was at the seed formation stage, granule growth stage or over-wetting stage after all the binder solution had been consumed.

Consequently, since the granules that were above 850 microns and below 250 microns were excluded from the tableting analysis, it is possible that the binder concentration in the dried granulation was different from the calculated concentrations of 1, 3, and 5%. Assuming a 10-micron constant thickness volumetric layer on the surface of different sized granules, calculations showed that 77.8% of the calculated binder concentration would be retained in the dry granulation assuming a normal particle size distribution, whereas 82.1% and 66.4% of the calculated binder concentration would be retained in the dry granulation assuming a distribution skewed to the low and the high diameters respectively. This effectively means that experimental binder percent differences of 0.86% could have been compared where the calculated difference would be 2.0% (82.1% of 3% compared against 66.4% of 5%). No attempt was made to determine the particle size distribution of the granules between 250 and 850 microns.

RSM Analysis

Response Surface Method (RSM) was used for the determination of critical attributes of the compression pressure and the binder concentration. A statistical analysis of the quadratic model confirmed that these two factors were statistically significant (Table 3). Coded factors and their set limits (lower to upper) are presented in Table 1. The experimental responses and the 3-dimensional fitted response surface plots

Table 3 ANOVA analysis for the CaCO3-binder systems models

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>R1 p-Value</th>
<th>R2 p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaCO₃-HPC</td>
<td>0.0005</td>
<td>0.0309</td>
</tr>
<tr>
<td>CaCO₃-HPMC</td>
<td>0.0001</td>
<td>0.0005</td>
</tr>
<tr>
<td>CaCO₃-Na-Alg</td>
<td>0.0005</td>
<td>0.0192</td>
</tr>
</tbody>
</table>

This Journal is © IPEC-Americas

June 2020

J. Excipients and Food Chem. 11 (2) 2020 13
obtained are shown in Figure 2. The plots represent the area under the compression curve (compression work) (R1) (kg.mm) and the tablet crushing strength (R2) [N] as a function of binder concentration (A:A) (w/w) and compression load (B:B) (kg).

The RSM results show that when the AUC is considered as the response parameter, the lower (1%) and upper (5%) values of the binder concentration have less effect on the AUCs than medium (3%) values for the HPC binder (Figure 2-A). Furthermore, the highest AUC value was obtained at the highest compression load with 3% HPC. When HPMC was used as a binder, the relationship between its concentration and the AUC values showed a curvilinear relationship but with a shallower “bend” than that obtained with HPC (Figure 2-C). This only occurred at lower values of the compression load. For medium and upper compression load ranges, high AUCs were obtained especially at upper values of binder concentration. The same observation was valid for the tablet crushing strength factor, whereby a sharp increase in crushing strength was found at the upper values of both factors (Figure 2-D). For Na-Alg, RSM analysis showed the same curvilinear relationship between binder concentration and AUC as that for HPC (Figure 2-E). Thus a maximum AUC was obtained at 3% binder concentration up to medium values of the compression load. Furthermore, the AUCs were at a maximum when the compression load exceeded its medium value, and when the binder concentration was minimal. However, the RSM for tablet crushing strength (Figure 2-F), unlike the AUC, showed maximum values at the upper limits of both factors. Moreover, medium values of compression pressure displayed crushing strength values close to the maximum at the 5% binder concentration.

Although the RSM results indicated that maximum crushing strength was obtained at the upper values of both the binder concentration and the compression load (Figure 2-B, D, F), 3% w/w binder concentration, and 300 kg compression load showed comparable crushing strength values. This effect, in terms of the crushing strength, was supported by the RSM finding involving the AUC as well. (Figure 2-A, C, E). The highest AUC value was obtained at the highest compression load of powders granulated with a binder concentration of 3%.

Compression Analysis

Compression analysis of CaCO$_3$ granulated with different binders was performed using the F-D technique. F-D curves were generated using the instrumental tablet press (GTP) for the three different binders at compression loads between 100-500 kg. The area under each curve was numerically calculated and plotted as a function of the binder concentration at each compression load; results are presented in Figures 3, 4, and 5.

For CaCO$_3$ granulated with HPC (CaCO$_3$-HPC), the AUCs at compression loads of 100-400 kg, increased until 3% HPC, and then decreased at 5% w/w HPC (Figure 3). In contrast, when the compression load was increased to 500 kg, the AUC continuously increased with binder concentration. It was also observed that the AUC of granulated CaCO$_3$ was greater than that of the raw material at all binder concentrations and all compression loads (Figure 3).

For CaCO$_3$-HPMC, the AUCs can be divided into two compression regimes; the first one from 100-300 kg, and the second from 400-500 kg (Figure 4). In the lower compression range, the AUCs increased with increasing binder concentration. The previously noted decrease in the AUC for CaCO$_3$-HPC at the 5% w/w level was not detected in this range. However, at higher compression loads of 400 and 500 kg, a decrease in the AUC value upon increasing the binder concentration from 3-5% w/w was, again, evident.

For CaCO$_3$-Na-Alg, the decrease in the AUC at 5% w/w Na-Alg dominated the compression behavior at all compression loads (100-500 kg) (Figure 5). For the 1 and 3% Na-Alg concentration, there was either no change or a statistically insignificant increase in the AUC values. The AUCs of non-granulated natural CaCO$_3$ was lower than that of CaCO$_3$-Na-Alg at all binder concentrations.

The AUC value reflects the extent of deformation,
Figure 2 The experimental responses and the 3-dimensional fitted response surface plots for AUC (R1) and tablet crushing strength, TCS (R2) for (A) CaCO₃-HPC, (B) CaCO₃-HPMC and (C) CaCO₃-Na-Alg.
Figure 3 Compression work (AUC) for the CaCO$_3$-HPC system vs. binder concentration at a compression load of 100-500 kg.

Figure 4 Compression work (AUC) for CaCO$_3$-HPMC system vs. binder concentration at a compression load of 100-500 kg.

whether plastic or brittle fracture, taking place upon compression of powders. Such deformation produces new fresh surface-to-surface contacts resulting in hard compacts (30). Thus, it is preferable to optimize powder processing parameters (e.g. compression load) and/or granulation parameters (e.g., binder concentration) so that granules undergo a higher extent of deformation upon compression. For CaCO$_3$ compression, when the extent of fragmentation amongst the granules is high, new fresh surfaces are available for providing more surface contacts, thus resulting in high mechanical strength (32). Hence, high AUC values are desirable to optimize different binder concentrations at different compression loads.
For example, the 5% w/w concentration of HPC in the CaCO$_3$-HPC granules is not optimum concerning AUC values. The 3% w/w concentration of HPC yields a maximum AUC at compression loads between 100-400 kg (Figure 3). At a compression load of 500 kg, the highest AUC value was obtained at 5% HPC. On the other hand, 5% w/w HPMC is more favorable for granulation of CaCO$_3$ at compression loads between 100-300 Kg (Figure 4) whereas 3% HPMC is favorable at compression loads between (400-500 kg; Figure 4), With Na-Alg the maximum AUC occurs the 3% w/w binder concentration over the whole range of compression loads (Figure 5). This implies that Na-Alg, at >3% provides no advantage in maximizing AUC regardless of the compression load used. AUC differences between native CaCO$_3$ and its combination with different binders are greater with HPMC or Na-Alg than with HPC. Hence, the former two binders are able to modify CaCO$_3$ tableting properties better.

The above results obtained from the F-D curve analysis were compared with those obtained by compression analysis using the Kawakita equation. Plots of the P_k values versus the binder concentration are presented in Figure 6. The P_k of un-granulated, raw CaCO$_3$ is included in the data in Figure 6 for comparison. Changes in the P_k values with binder concentration followed a similar trend obtained with the AUC. A maximum P_k was obtained at 3% w/w followed by a decrease at the 5% w/w concentration of each binder.

The similar behavior of changes in P_k values to that obtained for most AUC profiles is because both techniques reflect similar properties of powders subjected to deformation upon compression. In other words, the energy of granule deformation (AUC) is equivalent to the load needed for volume reduction (P_k is ½ powder volume reduction). Specifically, the granules with a 3% binder display a greater deformation tendency (as reflected in the greater AUC) than those at 1% or 5%. A high tendency to deformation produces harder granules which consequently require a high compression load to reduce the powder bed volume (high P_k value). In brief, the Kawakita parameter, P_k, produced a ‘profile trend’ relating to the binder concentration (Figure 6) that matched that of the AUC/binder concentration data at most compression loads investigated (Figures 3-5). Interestingly, P_k values calculated for each binder type was based on a linear relationship across the whole compression load range (100-500 kg). This implies that P_k is calculated based upon five compression loads (100-500 kg) whereas each AUC value is based upon one individual compression load. Consequently, the P_k value provides

![Figure 5 Compression work (AUC) for CaCO$_3$-Na-Alg system vs. binder concentration at a compression load of 100 – 500 kg.](image-url)
an average indication of the granule strength whereas the AUC provides a similar indication but at a specific compression load. Nevertheless, AUC measurements are more specifically informative than P_k values in determining optimum process parameters (such as binder concentration) at each compression load applied. For example, the previously described ‘profile trend’ was found to deviate at specific compression loads. This was noticed for the data in Figure 3 for HPC at 500 kg and in Figure 4 for HPMC at 100-300 kg wherein the maximum AUCs were obtained at 5% w/w binder. In contrast, the P_k values indicated an optimum binder concentration of 3% (Figure 6).

Crushing strength analysis

Tablet crushing strength is a measure of how efficient the binder is in holding the granules together in a compact with inter- and intra-granular forces. The crushing strength of tablets made of raw CaCO$_3$ and CaCO$_3$ granulated with HPC, HPMC, and Na-Alg, was tested as a function of the compression force at binder concentrations of 1%, 3%, and 5% (w/w). The results are shown in Figure 7.

The crushing strength of tablets made of CaCO$_3$-HPC was not significantly greater than that of the raw CaCO$_3$ tablets at the three binder concentrations tested (Figure 7). The difference was greater at low compression forces up to 35-40 kN, disappearing at higher compression forces.

For CaCO$_3$-HPMC tablets, crushing strength values followed the same behavior as those of CaCO$_3$-HPC tablets whereby there was an increase up to compression forces of 40 kN above which the rate of increase was lesser (Figure 7). The crushing strength profile of raw CaCO$_3$ is included for comparison. Surprisingly, the CaCO$_3$-1% HPMC tablets did not differ from the raw ones with respect to the crushing strength results. It was only at HPMC contents of 3% and 5% (w/w) that the tablets showed marginal differences in crushing strength values compared to the raw ones. Once more, such differences were greater at low compression forces (<40 kN).

The crushing strength values of CaCO$_3$-Na-Alg tablets and their differences compared with natural CaCO$_3$ were the greatest compared to the other two binders at all concentrations of Na-Alg used (Figure 7). The crushing strength of tablets made from these granules showed an initial sharp increase up to 40-45 kN, above which there was either a decline at 1% or no change at 3% and 5%.
Figure 7 Tablet crushing strength (TCS) vs. compression force for CaCO$_3$ powder and granulated CaCO$_3$ with different binders at different concentrations.

AUC-R and TCS-R ratios

The AUCs and the mechanical strength of tablets consisting of the CaCO$_3$-binder powders at different concentrations of the binders were compared. This was performed using the relative ratios of both parameters, i.e., AUC-R and TCS-R whereby each ratio expresses a quantitative measure of the change of each parameter with respect to the reference. For example, an AUC-R or TCS-R value of <1.0 indicates a lower value of the parameter for granulated CaCO$_3$ than the reference. AUC-R values of each CaCO$_3$-binder sample at 1, 3, and 5% w/w binder concentrations are presented in Figure 8. Compression loads of 300 and 500 kg, representing the low and high values, were used. This was based on the fact that significant changes in AUCs
Figure 9 Relative tablet crushing strength (TCR-R) at 30 kN and 50 kN compression force and binder concentrations of 1%, 3%, and 5% for the three granulated systems.

forces were chosen based on the large changes in tablet crushing strength above a compression force of 30 kN for all the CaCO₃-binder samples (Figure 9).

When the granulated and the reference (the un-granulated) CaCO₃ powders were compared (Figure 7), there were low and high regions of compression pressures which determined the observed wide and narrow differences, respectively in corresponding AUC values (Figures 3-5) and tablet crushing strength values (Figure 7). Thus the AUC-R and TCS-R ratios were adopted to provide an indication of the extent of increase or decrease in the AUC and crushing strength values compared to the reference. These ratios potentially provide a more reliable indicator of the compression force and binder concentration required for the industrial processing of CaCO₃ than AUCs and tablet crushing strength absolute values.

For CaCO₃-HPC, data in Figure 8-A showed that a low compression load (300 kg) and an HPC concentration of 3% w/w could be used to increase the AUC-R to values greater than those that at high compression load (500 kg) and at 5% w/w binder. This suggests that the extent of deformation (brittle fracture) of CaCO₃-HPC granules is higher at low compression loads than at high compression loads. Interestingly, the AUC-R results are consistent with the TCS-R data in Figure 9-A for CaCO₃-HPC whereby high TCS-R values (2.6-3.0) occur at low compression force (30 kN- single punch) and 3% w/w binder. On the other hand, the low TCS-R values for CaCO₃-HPC (1.0-1.4) suggest that there is no added value in using a high compression force (50 kN) regardless of binder concentration.

For CaCO₃-HPMC, the higher binder concentration and lower compression loads presented higher AUC-R values, as shown in the data in Figure 8-B. The maximum AUC-R is attained at CaCO₃-5% w/w HPMC when compressed at 300 kg. This is consistent with the TCS-R results shown in Figure 9-B whereby CaCO₃-HPMC compressed at 30 kN displayed the highest TCS-R values at the 5% w/w binder. In fact, at all concentrations of the binder, CaCO₃-HPMC exhibited higher TCS-R values; 1-6 at 30 kN compared to 0.73-2.4 at 50 kN compression force.

TCS-R values of each CaCO₃-binder samples at the 1%, 3%, and 5% w/w binder concentrations are presented in Figure 9. Low and high compression forces of 30 and 50 kN were chosen to identify the force effect on the TCS-R values. These values of compression started to occur at compression loads >300 kg for all the CaCO₃-binder samples (Figure 8).
The greatest crushing strength was obtained with the CaCO$_3$-Na-Alg granules at all compression forces (Figure 7). The data in Figure 8-C and 9-C show the effect of compression at low loads (300 kg) on AUC-R and TCS-R values, respectively. There was no difference in AUC-R values at binder concentrations of 1% and 3% w/w, which decreased at 5% (Figure 8-C). TCS-R results were consistent with AUC-R data, as decreasing the compression pressure resulted in higher TCS-R values. There were no significant differences in the TCS-R values (Figure 9-C), upon varying the binder concentration (6.2-7.2 at 300 kg). The highest TCS-R values were obtained for the CaCO$_3$-Na-Alg. This suggests that tablet properties of CaCO$_3$-Na-Alg were influenced more by the compression load than by the binder concentration.

Morphology

SEM testing of the granules was performed for visual confirmation of the granulation process. Granules were visualized at the maximum binder concentration used in this work, i.e., at the 5% w/w. SEM results for the reference sample are shown in Figure 10A, Figure 11A, and Figure 12A at different magnifications. The reference sample was not homogeneous in size as rock-shaped granules of planar and irregular surfaces were surrounded by tiny pieces of CaCO$_3$. The three granulated solutions produced a larger size and more regularly shaped particles than natural CaCO$_3$. This is clear when the particle shapes are viewed at 200x magnification (Figure 10B, C, D). When viewed at 2000x (Figure 11), the surface appeared to be made up of the same small particles of CaCO$_3$ for all the binders used. At 10000x magnification (Figure 12), some CaCO$_3$ crystals can be viewed on the surface in addition to small pieces, which are more likely to belong to the dried binder and/or CaCO$_3$ surrounding and covering the crystal particles. This observation applies to SEM results for HPC and HPMC binders in Figure 12. However, no CaCO$_3$ crystals were detected on the surface of CaCO$_3$ granulated with Na-Alg (Figure 12D).

The most desirable outcomes with respect to the AUC, P_k, and compact crushing strength were obtained with a binder concentration of 3%. It has been reported that there is a granule saturation level according to the binder content. Since the binder solution volume to
Figure 11 Particle shape and size of (A) natural CaCO$_3$, (B) with the binder HPC, (C) HPMC and (D) Na-Alg at 2000x and particle size of 250-850 μm.

Figure 12 Particle shape and size of (A) natural CaCO$_3$, (B) with the binder HPC, (C) HPMC and (D) Na-Alg at 1000x and particle size of 250-850 μm.
CaCO₃ mass ratios were 25%, 46.4% and 63.2% for binder concentrations of 1%, 3%, and 5% respectively, this suggests that over saturation could be the case for the 5% w/w concentration of all the binders used in our work (33, 34). Binders are distributed at the periphery of the granules causing agglomeration of particles into lumps of individual particles. These lumps can be detected in the SEM micrographs (Figures 10-B, C, D at 200x magnification) resulting from the agglomeration of the individual CaCO₃ particles shown in Figure 10-A. The presence of particle agglomeration is obvious when granule surfaces are viewed at 2000x magnification (Figure 11). At 10,000x magnification, small individual particles of CaCO₃ appeared on the surface of the granules bound together by HPC and HPMC (Figure 12 B and C). It appeared that HPMC covered the CaCO₃ surface more uniformly than HPC. The absence of small particles on the surface of CaCO₃ granulated with Na-Alg (Figure 12D) may be related to the high viscosity of this binder. A high-water binding capacity may increase the volume of binder solution at which a change from granule growth to slurry or over-wetting occurs in the wet granulation. By not overshooting the granule growth regime, Na-Alg may be able to cause the greatest agglomeration of the largest number of different sized particles.

Table 4 Viscosity of binder solutions at 1, 3 and 5% (w/w) concentrations

<table>
<thead>
<tr>
<th>BINDER</th>
<th>BINDER CONCENTRATION (%w/w)</th>
<th>VISCOSITY (mPa.s)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPC</td>
<td>1</td>
<td>46.19</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>86.04</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>199.53</td>
</tr>
<tr>
<td>HPMC</td>
<td>1</td>
<td>446.94</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>762.18</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>142.70</td>
</tr>
<tr>
<td>Na-Alg</td>
<td>1</td>
<td>294.66</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4141.90</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2929.50</td>
</tr>
</tbody>
</table>

*Shear rate was fixed at 0.01s⁻¹

The viscosity of binder solutions

The aim of the viscosity studies was to link the behavior of powder compression with the solution properties of the binder. The viscosity of 1, 3, and 5% w/w of HPC, HPMC, and Na-Alg solutions were determined (Table 4). Viscosity of all binders increased from 1% w/w to 3% w/w. However, the viscosity was found to decrease for HPMC and Na-Alg, unlike HPC, at 5% w/w compared to the 3% w/w binder concentration.

Changes in the compression behavior due to changes in binder concentration were found to be correlated with changes in the viscosity of the granulating solution. HPMC and Na-Alg solutions reached maximum viscosities at 3% w/w, subsequently decreasing at 5% w/w binder concentration. These results are consistent with scientific and commercial data on Methocel™ and Na-Alg (35, 36). The decrease at the 5% w/w binder concentration is attributed to intra-chain electrostatic repulsion of charges on the backbone of the polymeric molecules (37). It has to be emphasized that the measured viscosities in the reported data (38) do not involve the measurement of torque change with an increase in spindle speed (or shear rate). Otherwise, measured viscosities of Na-Alg and HPMC through shear stress/shear rate relation would generally indicate a decrease in viscosity with concentration (39, 40). It is suggested that such a decrease, which reflects the shear-thinning phenomenon upon increasing the shear rate, does not correlate to the actual viscosities for granulation. Nevertheless, the maximum viscosities of Na-Alg and HPMC at 3% w/w correlated with the observed high granule strength. The viscosity of HPC was lower, as was its granule strength when compared to Na-Alg and HPMC (Table 4).

Specific surface area (SSA) of CaCO₃-binder granules

Generally, wet granulation results in a decrease in specific surface area. In this study, the increase in binder concentration from 1-5% for CaCO₃ resulted in values of SSAs shown in Table 5. Wet granulation increased the particle size of the raw CaCO₃ from 30-120 μm to 250-850 μm. The granules produced were composed of several CaCO₃ particles adhered together by the
binder.

Theoretically, the minimum decrease in SA based on a spherical particle when its size undergoes an increase can be estimated as shown in Equations 3 and 4:

\[SA = 4\pi r^2 \quad \text{Eq. 3} \]
\[V = \frac{4}{3}\pi r^3 \quad \text{Eq. 4} \]

where; SA and V are the surface area and volume of a sphere, respectively.

The mass (m) of a sphere is shown in Equation 5:

\[m = \rho V = \frac{4}{3}\pi r^3 \rho \quad \text{Eq. 5} \]

Where; \(\rho \) is the density.

Accordingly, the SSA is obtained using Equation 6:

\[SSA = \frac{SA}{m} = \frac{4\pi r^2}{\frac{4}{3}\pi r^3 \rho} = \frac{3}{\rho r} \quad \text{Eq. 6} \]

The change in the ratio of the SSA when the particle size undergoes an increase from \(r_1 \) to \(r_2 \) is shown in Equation 7:

\[\frac{SSA_2}{SSA_1} = \frac{\frac{3}{\rho r_2}}{\frac{3}{\rho r_1}} = \frac{r_1}{r_2} \quad \text{Eq. 7} \]

Table 5 shows that SSA decreases at 1-3% binder concentration for all binders followed by an increase at 3-5% for HPC and HPMC, but a continued decrease for Na-Alg. Theoretically, an increase in particle size results in a decrease in its SSA. SEM indicates that CaCO\(_3\) particles agglomerate to an approximate particle size of 500 micrometers (Figure 10) from a native size of 120 \(\mu \)m, an SSA ratio of \(\sim 4 \). However, the SSA ratios at 3% and 1% binder concentrations for HPC, HPMC, and Na-Alg are 2.3, 1.5, and 1.0 respectively (Table 5). It is speculated that this significantly lower change in the SSA could be attributed to the mechanism of binding and surface structure of CaCO\(_3\) particles, where the agglomerated porosity of the granule is sufficiently large to partly negate the increased particle size. Therefore, the measured SSA does not indicate a size enlargement of the same particle but instead a new surface structure comprising numerous CaCO\(_3\) particles adjacent to each other due to binding. This can be seen from the SEM photographs in Figure 10 (B, C, D). However, SSA values increased at a binder concentration of 5% w/w for HPC and HPMC. It is speculated that at a significantly greater granulating volume to CaCO\(_3\) mass ratio of 63.2% v/w, the granulation approaches the slurry stage, with consequent partial granule de-agglomeration causing an increase in SSA. On the other hand, the SSA continued to decrease upon increasing the Na-Alg concentration from 3% to 5% w/w and thus may indicate that this binder may not have reached the slurry stage even at a granulation volume to CaCO\(_3\) mass ratio of 63.2%. Interestingly, the viscosity of 3% and 5% Na-Alg solutions are an order of magnitude greater than those of the HPC and HPMC solutions of similar concentrations. This greater water-binding capacity may be partly responsible for the transition of the wet granulation from the granule growth stage.
the intra-granular porosity of the granules at this concentration value (5% w/w). This can be justified by the low wetting ability of Na-Alg to cover the CaCO₃ surface upon granulation. Such low wettability was indicated by the high contact angle made by a Na-Alg droplet (5% w/w) on the surface of a CaCO₃ compact (Figure 13 A). In contrast, as stated previously, HPC and HPMC droplets (5% w/w) penetrated inside the CaCO₃ surface as no intact droplets were formed (Figure 13 B). It can be argued that the high values for crushing strength of the compacts in the binder type order; Na-Alg>HPMC>HPC and in the binder concentration order; 5%>3%>1%, is due to the high viscosity of the binder solution at the same binder type and concentration. This was very clear when the contact angle is used. The lower viscosity of HPC and HPMC solutions compared with that of the Na-Alg solution allows them to penetrate the porous surface of CaCO₃, hence a greater amount is required to form similar-sized agglomerates. Due to the high viscosity of Na-Alg and its ability to gel, the alginate forms a gel at the CaCO₃ surface, hence including more CaCO₃ native particles in an agglomerate, for a given amount of binder. This can be attributed to a dual effect; the film-forming property of the Na-Alg and its gelling at the surface of CaCO₃ particles. It is also known that Ca²⁺ ions in the presence of Na-Alg form a cross-linked matrix (43).

Formulation and physical stability of CaCO₃ tablets

Crushing force and disintegration time were measured during the storage of physical compacts. Physical stability analysis performed on CaCO₃ preparations is presented in Tables 6 and 7 for the tablets comprising HPMC and Na-Alg respectively. Tablet hardness decreased and disintegration time and friability increased during storage. Nevertheless, tablet properties were within compendial specifications after 6 months of storage at 40°C/closed conditions. At 40°C, 75% RH, there was an increase in tablet hardness, probably due to increased binding of granules further strengthening the compacts. Calcium carbonate tablets were able to maintain their most important physical properties, i.e., crushing force and disintegration within predesigned limits during storage.

Figure 13 Contact angle of droplet of binder solution on the surface of CaCO₃ compacts, (A) Na-Alg, (B) HPC or HPMC.

to the slurry or over-wetting stage at a higher binder solution volume to CaCO₃ mass ratio.

The specific surface area (SSA) of granules correlates with the extent of wet granulation taking place for the agglomeration of particles. Theoretically, upon increasing the volume of binding solution, wet granulation delivers a maximum limit of wet mass cohesiveness above which the granulated powder system changes from a thick paste into a slurry (40-42). Consequently, the initial decrease in SSA for HPC, HPMC, and Na-Alg (when their concentrations were increased from 1 to 3%) may be a direct indication of increased agglomeration of the CaCO₃ granules.

Contact angle measurements

At all binder concentrations, (1-5% w/w), Na-Alg formed intact droplets. A representative image of such a droplet for all concentrations is shown in Figure 13 A at a binder concentration of 5% w/w. On the other hand, HPC and HPMC droplets in the same concentration range (1-5% w/w) penetrated the compacts (Figure 13 B).

Contact angle values of binders are related to their extent of wettability on the surface of CaCO₃. Such measurements are important to determine; especially when the SSA of CaCO₃-Na-Alg granules decreased at a binder concentration of 5% w/w. Such a decrease suggests that the binder is still effective in decreasing
Table 6 Physical stability results for CaCO₃ tablets prepared with HPMC binder and stored at 40 °C, 75% RH for 6 months

<table>
<thead>
<tr>
<th>DURATION</th>
<th>STORAGE CONDITION</th>
<th>TABLET HARDNESS (N) (NOT LESS THAN 100 N)</th>
<th>TABLET DISINTEGRATION TIME (LESS THAN 15 MIN)</th>
<th>FRIABILITY (%) (NOT MORE THAN 1%)</th>
<th>WATER CONTENT (%) (NOT MORE THAN 1.5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Initial</td>
<td>205-246, SD=9.1</td>
<td>30 s - 45 s</td>
<td>0.27</td>
<td>0.36</td>
</tr>
<tr>
<td>3rd month</td>
<td>40 °C, 75% RH</td>
<td>238-267, SD=3.5</td>
<td>1 min -2 min</td>
<td>0.15</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>186-223, SD=8.2</td>
<td>50 s - 1.10 min</td>
<td>0.46</td>
<td>0.45</td>
</tr>
<tr>
<td>6th month</td>
<td>40 °C, 75% RH</td>
<td>259-304, SD=5.5</td>
<td>4 min - 5 min</td>
<td>0.29</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>167-194, SD=6.7</td>
<td>45 s - 66 s</td>
<td>0.38</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Table 7 Physical stability results for CaCO₃ tablets prepared with Na-alg. binder and stored at 40°C, 75% RH for 6 months.

<table>
<thead>
<tr>
<th>DURATION</th>
<th>STORAGE CONDITION</th>
<th>TABLET HARDNESS (N) (NOT LESS THAN 100 N)</th>
<th>TABLET DISINTEGRATION TIME (LESS THAN 15 MIN)</th>
<th>FRIABILITY (%) (NOT MORE THAN 1%)</th>
<th>WATER CONTENT (%) (NOT MORE THAN 1.5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Initial</td>
<td>259-286, SD=6.8</td>
<td>40 s - 62 s</td>
<td>0.19</td>
<td>0.42</td>
</tr>
<tr>
<td>3rd month</td>
<td>40 °C, 75% RH</td>
<td>273-293, SD=10.5</td>
<td>5 min - 7 min</td>
<td>0.15</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>216-241, SD=9.1</td>
<td>1.0 min - 3.0 min</td>
<td>0.39</td>
<td>0.44</td>
</tr>
<tr>
<td>6th month</td>
<td>40 °C, 75% RH</td>
<td>286-318, SD=9.4</td>
<td>9 min - 12 min</td>
<td>0.11</td>
<td>1.38</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>189-215, SD=7.8</td>
<td>1.5 min - 2.0 min</td>
<td>0.39</td>
<td>0.43</td>
</tr>
</tbody>
</table>

CONCLUSIONS

Granules ready for compression containing CaCO₃ from natural sources were produced at an optimum binder concentration of 3% w/w for the granulating agents tested namely HPC, HPMC, and Na-Alg. The optimum binder concentration was determined from measurements of the area under the compression curve (AUC) and P_k values associated with the load-displacement curve and Kawakita analysis, respectively. This study further demonstrated that when granulated powders are compressed and compared with the natural CaCO₃ powders, relatively lower compression loads have a disproportionately greater effect in increasing powder compression (AUC-R) and tablet properties (TCS-R) than relatively higher compression loads. The resultant optimum concentration of the binders used was attributed to viscosity and specific surface area variations, which both reached optimum values at the 3% w/w binder concentration. Finally, the ready for compression granules of natural origin CaCO₃ comprising 3% binder, can be used as a directly compressible powder. This granulated powder demonstrated its ability to form compacts that retained their physical properties when stored at 40°C, 75% RH for 6 months.

FUNDING

This research received no external funding.

CONFLICT OF INTEREST

The authors declare no conflict of interest. The Jordanian Pharmaceutical Manufacturing Company (JPM) did not have any role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

ACKNOWLEDGMENTS

The authors would like to thank the University of Jordan and the University of Greenwich for their ongoing support. The authors also wish to thank the Jordanian Pharmaceutical Manufacturing Co. (JPM) for providing materials, laboratory, and testing facilities. The authors would like to thank Mr. Akram Bikdash.
for his help in carrying out some of the granulation experiments.

REFERENCES

